

UNMET NEED IN PATIENTS WITH METASTATIC TRIPLE NEGATIVE BREAST CANCER INITIATING A FIRST-LINE TREATMENT

INTRODUCTION

Despite treatment advances, the survival rates of patients with metastatic triple negative breast cancer (mTNBC) are still low and real world data on implementation and outcome of new treatment options in clinical routine are scarce. Here, we give insights into current treatment patterns and outcome of patients with mTNBC initiating a first-line treatment (1L) in routine care in Germany using data from the OPAL registry.

CONCLUSION

The tumor registry platform OPAL provides real-world data on treatment and outcome of patients with mTNBC in Germany. Despite treatment advances, patients with mTNBC, regardless of PD-L1 status, still have low PFS and OS rates in 1L and about one quarter of patients died before reaching 2L. This underscores the need for evaluating new treatment options to improve mTNBC outcomes.

METHODS

In the prospective registry platform OPAL (NCT03417115), over 2000 patients with metastatic breast cancer were enrolled by 189 German sites from 01/2018 to 04/2025. Details on (sequential) treatments, patient and tumor characteristics, biomarker testing, clinical and patient-reported outcomes are collected. Follow-up is until death, lost-to-follow-up or up to 5 years after start of 1L for mTNBC. This analysis focuses on 368 patients with mTNBC initiating 1L between January 2018 and August 2023 that meet the study inclusion criteria. Database cut was on December 31st, 2024.

For the PD-L1 status, the test result (positive/negative/unknown) as documented by the respective study sites was used.

RESULTS

Patient characteristics by PD-L1 status are displayed in **Table 1**. Patients with mTNBC had a median age of 62 years (25% of patients ≥ 75 years), with 11% of patients having an ECOG performance status of ≥ 2 . 38% of patients had de novo metastatic disease at initial diagnosis and 72% of patients had visceral metastasis at start of 1L. Brain metastasis were present in about 7% of patients at start of 1L.

Patients with PD-L1 positive tumors

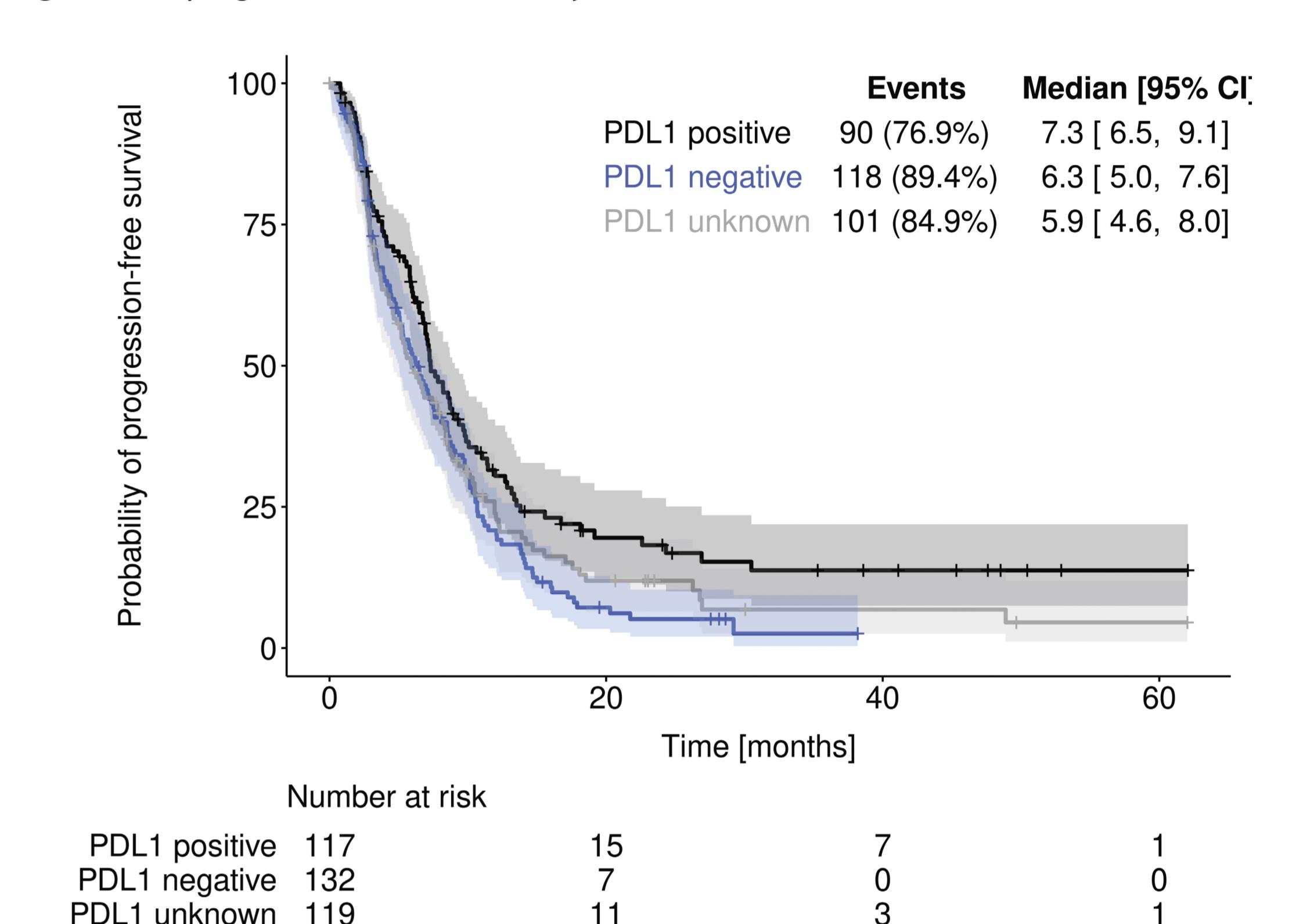
Of patients with PD-L1 positive tumors ($n=117$), 81% received a 1L with PD-(L)1 inhibitors in combination with a chemotherapy (**Figure 1**). Of patients receiving a PD-(L)1 inhibitor, 92% received atezolizumab and 8% pembrolizumab. Of note, atezolizumab was approved in 2019, whereas pembrolizumab was approved in 2021. Median progression-free survival (PFS) was 7.3 months (95% confidence interval (CI) 6.5–9.1 months, **Figure 2** and **Figure 3**). For 57% of patients, a 2L treatment was already documented and 8% of patients still had the potential to receive a 2L (**Figure 4**).

Limitations
Outcome data presented here indicate the effectiveness of treatments in real-world patients treated in routine care. Since this is a descriptive analysis, it is important to note, that differences in OS/PFS for different PD-L1 status can also arise due to differences in other baseline characteristics.

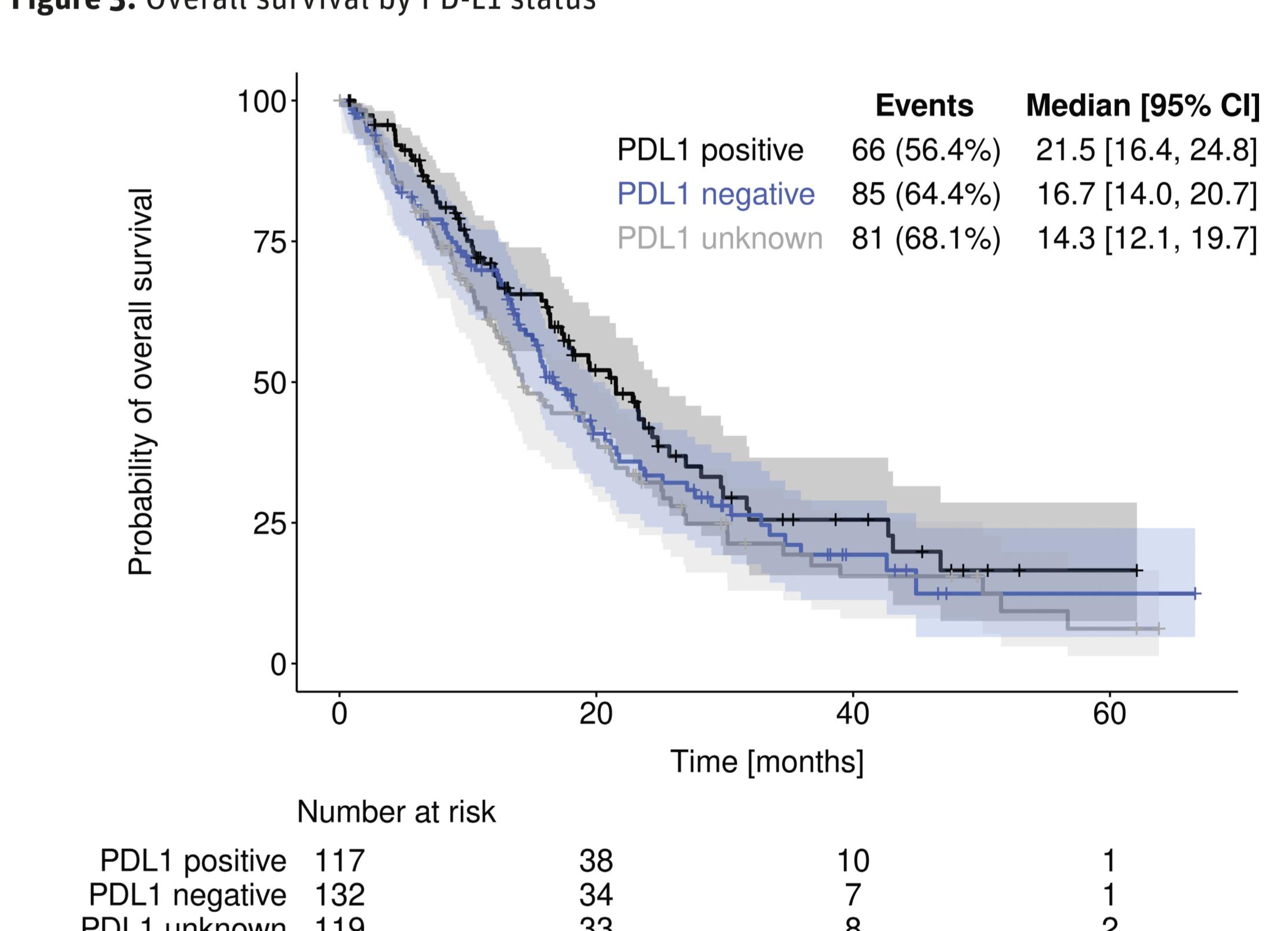
Real world progression-free survival is defined as the time from start of first-line treatment (1L) until disease progression or death, whichever occurs first. Patients without an event will be censored at start of next line treatment or at the last confirmed activity date, whichever is earlier. PFS in registries can differ from PFS in clinical trials, since the RECIST criteria are usually not applied in routine care, and method and time point of imaging is performed as per local site standard. PFS in registries represents the time to clinically relevant progression in routine care.

Overall survival is defined as the time from start of 1L until death of any cause. Patients still alive will be censored the last contact date.

Table 1: Patient and tumor characteristics by PD-L1 status


Patients (N)	PD-L1 positive	PD-L1 negative	PD-L1 unknown	Total
Patients (N)	117	132	119	368
Age				
$\geq 18 \text{ & } < 36$	4 (3.4%)	3 (2.3%)	3 (2.5%)	10 (2.7%)
$\geq 36 \text{ & } < 46$	8 (6.8%)	12 (9.1%)	5 (4.2%)	25 (6.8%)
$\geq 46 \text{ & } < 56$	19 (16.2%)	36 (27.3%)	18 (15.1%)	73 (19.8%)
$\geq 56 \text{ & } < 65$	38 (32.5%)	31 (23.5%)	23 (19.3%)	92 (25.0%)
$\geq 65 \text{ & } < 75$	20 (17.1%)	28 (21.2%)	28 (23.5%)	76 (20.7%)
≥ 75	28 (23.9%)	22 (16.7%)	42 (35.3%)	92 (25.0%)
ECOG				
0	42 (35.9%)	59 (44.7%)	36 (30.3%)	137 (37.2%)
1	48 (41.0%)	41 (31.1%)	50 (42.0%)	139 (37.8%)
≥ 2	8 (6.8%)	21 (16.0%)	10 (8.4%)	39 (10.6%)
Unknown to site	19 (16.2%)	11 (8.3%)	23 (19.3%)	53 (14.4%)
Any comorbidity				
Yes	81 (69.2%)	91 (68.9%)	93 (78.2%)	265 (72.0%)
No	36 (30.8%)	41 (31.1%)	26 (21.8%)	103 (28.0%)
Charlson comorbidity index				
0	90 (76.9%)	107 (81.1%)	92 (77.3%)	289 (78.5%)
1	13 (11.1%)	8 (6.1%)	15 (12.6%)	36 (9.8%)
2	8 (6.8%)	10 (7.6%)	9 (7.6%)	27 (7.3%)
≥ 3	6 (5.1%)	7 (5.3%)	3 (2.5%)	16 (4.3%)
Metastatic stage at first ever BC diagnosis				
M0 (recurrent BC)	67 (57.3%)	79 (59.8%)	74 (62.2%)	220 (59.8%)
M1 (de novo)	47 (40.2%)	51 (38.6%)	41 (34.5%)	139 (37.8%)
Unknown	3 (2.6%)	2 (1.5%)	4 (3.4%)	9 (2.4%)
Visceral metastasis				
Yes	84 (71.8%)	94 (71.2%)	87 (73.1%)	265 (72.0%)
No	32 (27.4%)	30 (22.7%)	28 (23.5%)	90 (24.5%)
Missing	1 (0.9%)	8 (6.1%)	4 (3.4%)	13 (3.5%)
Metastatic sites				
Brain	9 (7.7%)	12 (9.1%)	4 (3.4%)	25 (6.8%)
Liver	39 (33.3%)	37 (28.0%)	34 (28.6%)	110 (29.9%)
Lung	53 (45.3%)	54 (40.9%)	46 (38.7%)	153 (41.6%)
Lymph nodes	72 (61.5%)	56 (42.4%)	58 (48.7%)	186 (50.5%)
Other	58 (49.6%)	80 (60.6%)	78 (65.5%)	216 (58.7%)
Missing	1 (0.9%)	8 (6.1%)	4 (3.4%)	13 (3.5%)

ECOG: Eastern Cooperative Oncology Group (Oken et al., 1982). Any comorbidity: comorbidities according to Charlson index (Oken et al., 1982; current comorbidity according to Charlson et al., 2011). Regist: registration. The values in italics refer to the number of patients with respective comorbidity in the CL. Multiple answers possible. Visceral metastasis: All metastatic sites documented from 8 weeks before until 8 weeks after start 1L were considered. Non-visceral: skin, bone and lymph node metastasis. Metastatic sites are defined as documentation of metastasis from 8 weeks before until 8 weeks after start of respective line of treatment. Multiple answers possible.


Figure 1: 1L treatment strategies by PD-L1 status

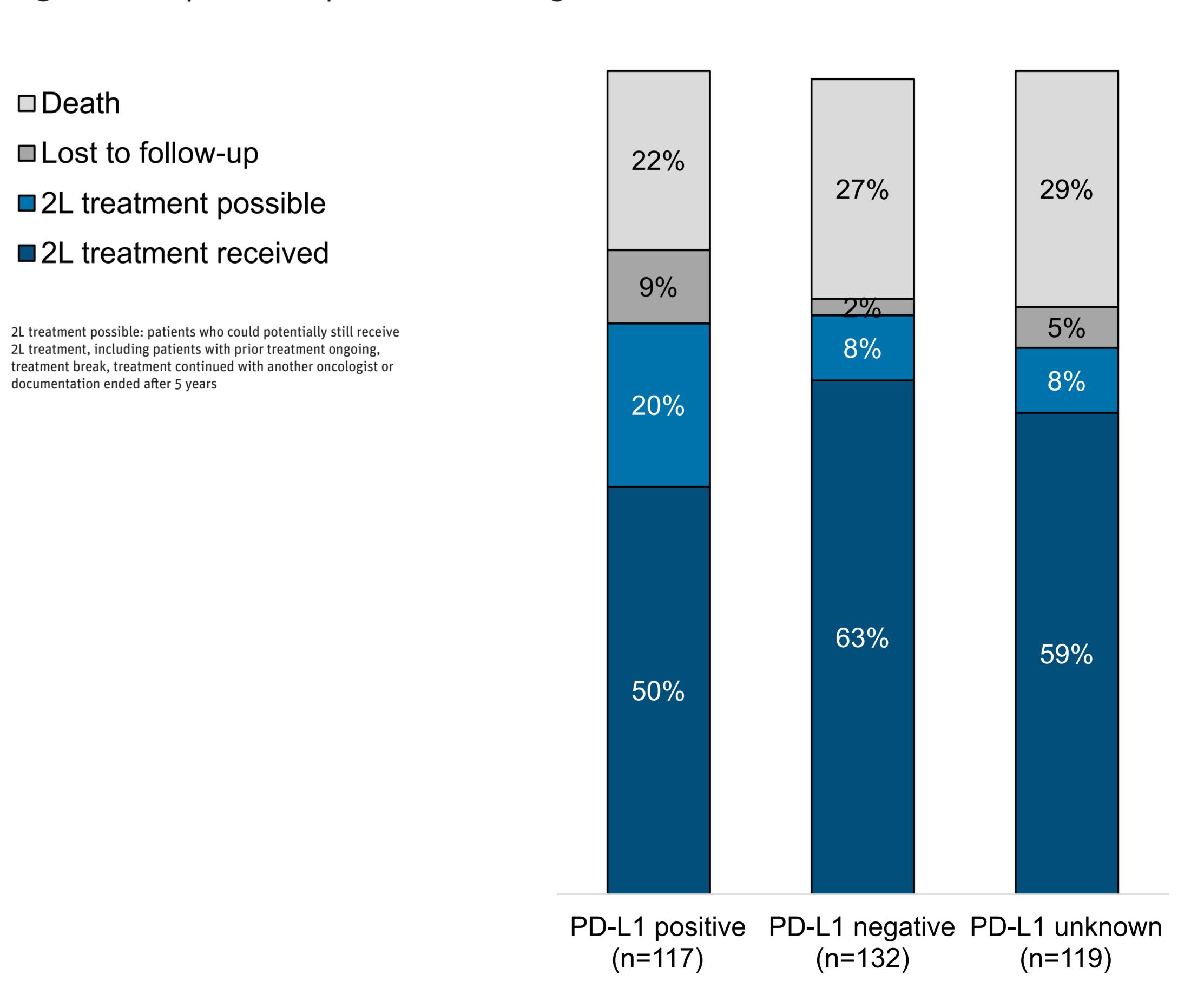

Figure 2: 1L progression-free survival by PD-L1 status

Figure 3: Overall survival by PD-L1 status

Figure 4: Proportion of patients receiving 2L

Elmar Stickeler¹,
Thomas Decker²,
Mark-Oliver Zahn³,
Marc Thill⁴,
Matthias Zaisz⁵,
Ard Nusch⁶,
Corina Teutsch⁷,
Meng Wang⁸,
Andra Kuske⁹,
Kai Ringwald¹⁰,
Lisa Krugel¹¹,
Nadia Harbeck¹²,
Achim Wöckel¹³,
Anja Welt¹⁴,
Katja Gratzke¹⁵.

¹ Prof. Dr. Gynäkologie und Geburtshilfe, Universitätsklinik Aachen, Aachen, Germany
² Prof. Dr. MVZ für Hämatologie und Onkologie, Ravensburg, Germany
³ Dr. MVZ Onkologische Klinikation Hatz, Goslar, Germany
⁴ Prof. Dr. Klinik für Gynäkologie und gynäkologische Onkologie, Agaplesion Markus Krone Klinik, Frankfurt am Main, Germany
⁵ Dr. Praxis für interdisziplinäre Onkologie & Hämatologie, Freiburg i. Br., Germany
⁶ Dr. Praxis für Hämatologie und interstitielle Onkologie, Ratingen, Germany
⁷ Frauenklinik und Brustzentrum, Kreiskranken Reutlingen, Reutlingen, Germany
⁸ PhD, Epidemiology and Real World Evidence, Gilead Sciences Europe, Stockley Park, UK
⁹ Dr. Medical Affairs, Gilead Sciences, Germany
¹⁰ PhD, Statistics, iomedico, Freiburg i. Br., Germany
¹¹ Clinical Epidemiology and Health Economics, iomedico, Freiburg i. Br., Germany
¹² Univ.-Prof. Dr. Brustzentrum, Frauenklinik, LMU Klinikum München, München, Germany
¹³ Univ.-Prof. Dr. Frauenklinik und Poliklinik, Universitätsklinik Würzburg, Würzburg, Germany
¹⁴ Prof. Dr. Innere Klinik Tumorforschung, Universitätsklinik Essen, Essen, Germany
¹⁵ Dr. Med. Department, iomedico, Freiburg i. Br., Germany

References:
 Charlson, M.E., Pompei, P., Ales, K.L., Mackenzie, C.R., 1987. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40, 373–383. [https://doi.org/10.1016/0022-0117\(87\)90171-8](https://doi.org/10.1016/0022-0117(87)90171-8)
 Oken, M.M., Creech, R.H., Torrey, D.C., Horton, J., Davis, T.E., McFadden, E.T., Carlson, P.P., 1982. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Ann Oncol 3, 453–456.
 Quan, H., Li, B., Couris, C.M., Fisman, K., Graham, P., Hirsh, P., James, I.M., Vijay, S., Sundararajan, V., 2011. Updating and validating the comorbidity index for hospital discharge records. J Clin Epidemiol 64, 1090–1096. <https://doi.org/10.1016/j.jclinepi.2010.09.023>
 Zahn MO, Welt A, Thill M, Stickeler E, Kuske A, Decker T, Ringwald K, Krugel L, Harbeck N, Deckert T. Implementation of new tests and treatment strategies in a data base of 368 patients with triple negative breast cancer initiating 1L treatment in routine care. <https://doi.org/10.1159/000352004>
Acknowledgements:
 The OPAL Registry group thanks all participating patients, physicians and study teams. Project idea, design, management and analysis: iomedico. The OPAL Study Group collaborates with the Arbeitsgemeinschaft Interstitielle Onkologie (AIO) der Deutschen Krebsforschung (DKFZ).
Conflicts of interest, general:
 E. Stickeler: Consulting fees: AstraZeneca, Novartis, Roche
 Payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing or educational events: AstraZeneca, Novartis, Roche, Onkowissen, Lilly, MSD
 Support for attending meetings and/or travel: Pfizer, Novartis, MSD
 Participation in a Data Safety Monitoring Board or Advisory Board: iomedico, AstraZeneca, MSD
 Leadership or fiduciary role in other board, society, committee or advocacy group, paid or unpaid: Gilead, AGO, IQVIA
Funding:
 OPAL is designed, managed and analyzed by iomedico and received commercial financial support from Roche Pharma AG and Onkowissen GmbH and temporary financial support from Daiichi Sankyo Deutschland GmbH, Daiichi Sankyo Europe GmbH, Eisai GmbH, Gilead Sciences Europe GmbH, Novartis, Pfizer, Sanofi, Takeda, and Mylan Germany GmbH, and Pfizer GmbH. This poster is funded by Gilead Sciences GmbH. None of the funders had any role in study design, data collection and interpretation of results.
Cite this:
 Stickeler E, Decker T, Zahn M, Welt A, Thill M, Zahn MO, Nusch A, Teutsch E, Wang M, Kuske A, Ringwald K, Krugel L, Harbeck N, Welt A, Gratzke K. Unmet need in patients with metastatic triple negative breast cancer initiating a first-line treatment - data from the OPAL Registry. 2025; CEMO Congress, 5619